立即扫码
享受一对一服务

发布时间:2019.02.21来源:知乎浏览量:112次标签:数据治理
想要做好数据治理,那要求还是蛮高的,要懂业务、懂数据、懂技术,所谓上能写制度办法,下能查数做分析;另外还要懂权衡、懂策略,甚至学学兵法,因为具体工作八成都是跟人有关,些许复杂。要求虽高,但实践往往要面对无力感和挫败感两种不舒服的体验,只能说还要有合适的性格和心态,不同的人适合不同的岗位了。
不谈定义,从上面图片中能看到数据采集、加工、整合、应用的生命周期,以及数据标准、数据质量、数据架构、元数据这些职能域,还有数据开发、数据分析、业务指标体系等等应用视角的内容。在dmbok中商业智能与数据仓库放在一起,数据仓库是矛盾集中的焦点,上游是组织内各个业务源系统,下游支持广泛的数据应用。
数据是流行的资产,需要跨系统、跨业务条线的综合治理,需要有机构统筹规划与决策、协调与推进。企业管理数据资产,就是管理数据的生命周期。数据先被创建或获得,然后存储、维护和使用,最终被销毁。有效的数据管理,数据的生命周期开始于数据获取之前,企业先期制定数据规划、定义数据规范,以期获得实现数据采集、交付、存储和控制所需的技术能力。
数据时代,尤其是大数据时代,各种名词概念层出不穷。这里面讨论下商业智能、数据分析、数据挖掘、数据驱动,这些名词出现在不同时期,有不同的背景或场景,不在赘述。
聊完数据驱动,说说数据分析,这也需要特别强调和澄清的概念。在我的理解和认知中,商业智能和数据挖掘都是数据分析的手段和方法,当然换个角度来看也可以把商业智能放到最后。然而不谈理论和概念,从实际情况看目前商业智能与it系统关联密切,而数据分析涵盖的范围则更广,所以我更倾向于把商业智能和数据挖掘看做是数据分析的手段和方法。
四、 数据挖掘是数据治理未来的主战场
下面要说说数据挖掘了,数据挖掘又称为数据库中知识发现(KDD),它是一个从大量数据中抽取挖掘出未知的、有价值的模式或规律等知识的过程。广义的数据挖掘是指知识发现的全过程,狭义的数据挖掘是指统计分析、机器学习等发现数据模式的智能方法,即偏重于模型和算法。
现在讨论大数据下的数据挖掘,应该和场景关联起来思考问题,因为数据质量和业务需求、技术方案密切相关。场景本身就是需要数据治理需要考虑的问题,以及对应的流程机制都需要进行规划。
发布时间:2021.04.12来源:亿信数据治理研究院浏览量:131次
发布时间:2021.01.12来源:知乎浏览量:137次
发布时间:2019.03.22来源:亿信华辰浏览量:101次
发布时间:2019.02.25来源:亿信华辰浏览量:110次
发布时间:2019.12.27来源:CSDN浏览量:145次
发布时间:2019.08.20来源:知乎浏览量:99次
发布时间:2021.08.04来源:亿信数据治理知识库浏览量:127次
发布时间:2019.01.11来源:亿信华辰浏览量:96次
人工
客服
预约
演示
您好,商务咨询请联系
400咨询:4000011866
咨询热线:137-0121-6791
技术
支持
您好,技术支持请联系
QQ:400-0011-866
(工作日9:00-18:00)