四个用例证明数据治理的自动化的好处

发布时间:2019.02.15来源:亿信华辰浏览量:136次标签:数据治理


如果没有至少某种程度的元数据驱动的自动化,组织就无法充分利用数据驱动的战略。

数据的数量和种类已经滚雪球,其速度也是如此。因此,与数据管理和数据治理相关的传统流程(主要是手动流程)已经破裂。它们非常耗时且容易出现人为错误,使合规,创新和转型计划更加复杂,这在信息时代并不理想。

因此可以肯定地说,组织无法在没有自动化的情况下获得数据的回报。

数据科学家和其他数据专业人员可能会花费高达80%的时间陷入困境,试图了解源数据或解决错误和不一致问题。

这需要时间并且更好地用于数据分析。

通过实施元数据驱动的自动化,跨行业的组织可以释放其高技能,高薪的数据专业人才,专注于寻找商品:可操作的见解,将为业务提供动力。

BFSI行业中的元数据驱动自动化

银行,金融服务和保险业通常比大多数人处理更高的数据速度和更严格的监管。这种官僚主义充斥着数据管理瓶颈。

当组织试图使用非专用系统和工具时,这些瓶颈只会变得更糟。

例如,通过MS Excel电子表格手动管理企业数据仓库的数据映射对于一家BSFI公司来说变得麻烦且不可持续。

在采用元数据驱动的自动化和自定义代码自动化模板之后,它节省了数十万美元的代码生成和开发成本,并以更少的资源在更短的时间内完成了更多的工作。自动化解决方案的投资回报率在第一年就实现了。

制药行业的元数据驱动自动化

尽管存在缺点,但用于管理数据映射的Excel电子表格方法在许多行业中都很常见。

但是,由于组织需要在当今的商业环境中处理大量数据,因此这种手动方法使得变更管理和确定端到端沿袭成为一项重大且耗时的挑战。

总部位于美国的一家全球制药巨头在采用元数据驱动的自动化之前遇到了这些问题。然后,制药公司能够扫描所有源和目标系统元数据,并将其保存在单个存储库中。用户现在可以在几秒钟内查看从源层到报告层的端到端数据沿袭。

总的来说,实施后节省了大量时间,总成本降低了60%

保险业中的元数据驱动自动化

保险是另一个必须应对高数据速度和严格的数据监管的行业。此外,该领域的许多组织发现他们已经超出了他们的系统。

例如,使用CDMA产品集中数据映射的保险公司可能缺少某些关键功能,例如版本控制,影响分析和沿袭,这会增加成本,上市时间和错误。

通过采用元数据驱动的自动化,组织可以标准化ETL前数据映射过程,并通过更改和发布过程更好地管理数据集成。因此,内部数据映射和跨职能团队现在可以轻松快速地访问基于Web的数据映射和有价值的信息,如影响分析和沿袭。

以下是企业采用这种方法,实现卓越运营,交付时间缩短80%,以及在12个月内实现投资回报的故事

非营利组织数据驱动的自动化

使用手动数据映射的组织引用的另一个常见问题是不断膨胀的复杂性和随后的混淆。

任何组织在没有充分成熟的数据管理计划的情况下扩展其数据驱动的重点,都会在某些时候经历这种情况。

世界上最大的人道主义组织之一,在世界各地拥有数百万会员和志愿者,面临着这个问题。

它认识到需要一种标准化ETL前数据映射过程的解决方案,以使数据集成更加高效和经济高效。

通过元数据驱动的自动化,组织将能够在中央存储库中扫描和存储元数据和数据字典,以及管理为企业数据仓库提供数据的遗留系统的业务定义和数据字典。

通过采用这种方法,组织实现了所有IT开发和跨职能测试团队的时间节省。此外,他们能够更轻松地管理映射,代码集,参考数据和数据验证规则

同样,投资回报率在一年内实现。

通用的元数据驱动自动化解决方案

元数据驱动的自动化是任何组织都可以从中受益的一种能力- 无论是哪个行业,正如这里记录的各种实际用例所证明的那样。

欧文自动化框架是欧文EDGE平台,全面的数据管理和数据治理的重要组成部分。

有了它,数据专业人员意识到这些与行业无关的好处:

  • 集中和标准化的代码管理,所有自动化模板都存储在受管理的存储库中
  • 更好的质量代码和最小化的返工
  • 业务驱动的数据移动和转换规范
  • 基于最佳实践的卓越数据移动作业设计
  • 在数据准备,部署和治理方面具有更高的灵活性和更快的价值实现时间
  • 跨平台支持脚本语言和数据移动技术

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 一文讲透数据治理核心指标

    一文讲透数据治理核心指标

    股份制改革对我国银行业来说只是一个开始,企业在风险管理、创造价值等方面还有很长的路要走。风险管理要求提供精准的数据模型、创造价值要求充分……查看详情

    发布时间:2020.06.19来源:CSDN浏览量:111次

  • 企业应该将数据治理作为加速数字化转型的催化剂

    企业应该将数据治理作为加速数字化转型的催化剂

    随着许多业务系统和应用程序(包括采购,呼叫中心交互,网站访问,移动应用程序使用以及越来越多的物联网传感器和设备)产生的大量客户数据,应该……查看详情

    发布时间:2019.07.04来源:知乎浏览量:103次

  • 大数据是如何被采集及应用的

    大数据是如何被采集及应用的

    尽管“大数据”一词近年来屡遭热捧,但很多人都还不知道什么是大数据,更不知道大数据有什么用。这两年,发现“大数据”这个词出现的越来越频繁了……查看详情

    发布时间:2019.01.11来源:亿信华辰浏览量:99次

  • 数据治理过程中核心数据界定怎么破?

    数据治理过程中核心数据界定怎么破?

    数据治理过程中,在我们费了九牛二虎之力盘点出企业当前数据资产的家当,形成了数据资产的清单后,同时也会列明这个业务域的核心数据实体,这就碰……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:102次

  • 数据都成为生产要素了?数据该如何治理?

    数据都成为生产要素了?数据该如何治理?

    先说说数据,其实现在说的数据和过去说的数据相比差别非常大,现在所说的数据不是一个静态文档,它是流动的数据,碎片化的数据,以各种各样的形式……查看详情

    发布时间:2020.11.23来源:知乎浏览量:203次

  • 数据太多、太乱、太杂?你需要这样一套数据治理平台

    数据太多、太乱、太杂?你需要这样一套数据治理平台

    当前,企业变革已经成为企业适应剧烈变化的市场环境、实现长期发展的必经之路。然而,过去为组织带来工作效率提升的烟囱式的孤岛式的业务系统……查看详情

    发布时间:2019.11.20来源:知乎浏览量:118次

  • 数据质量管理趋势

    数据质量管理趋势

    进一步信息又可分为物理信息和语义信息两类,其中物理层面的信息反映基础的数据结构;语义信息属于进阶有含义的语义数据结构,反映人类的视角。……查看详情

    发布时间:2019.11.15来源:知乎浏览量:124次

  • 数据治理框架:它是什么,我已经拥有它?

    数据治理框架:它是什么,我已经拥有它?

    由于第一个人在第一台计算机上打开了电源开关,IT和业务部门已决定如何处理由技术使用和创建的数据。虽然您不再提交穿孔卡或存档磁带(可能),……查看详情

    发布时间:2018.12.27来源:数据治理浏览量:133次

  • 数据与数据治理两个基本概念

    数据与数据治理两个基本概念

    数据治理这项基础数据能力的重要性越来越多突出。2017年4月22日,中国数据标准化及治理奖实践奖的现场评审在清华大学成功举行。……查看详情

    发布时间:2018.11.30来源:御数坊浏览量:124次

  • 数据在数字化转型时代的作用

    数据在数字化转型时代的作用

    说今天的商业环境变得极具竞争力可能是轻描淡写的,那些没有不断重塑业务的公司 - 以核心数据 - 最终会在市场中断的同时观望。数据技术,科……查看详情

    发布时间:2019.03.12来源:亿信华辰浏览量:116次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议