为什么我们需要数据仓库

发布时间:2019.01.07来源:LongFei浏览量:130次标签:数据治理

如果直接从业务数据库取数据

没有数据仓库时,我们需要直接从业务数据库中取数据来做分析。业务数据库主要是为业务操作服务,虽然可以用于分析,但需要做很多额外的调整,在我看来,主要有以下几个问题:结构复杂,数据脏乱,难以理解,缺少历史,大规模查询缓慢。

下面来简单解释一下这几个问题。

  • 结构复杂

业务数据库通常是根据业务操作的需要进行设计的,遵循3NF范式,尽可能减少数据冗余。这就造成表与表之间关系错综复杂。在分析业务状况时,储存业务数据的表,与储存想要分析的角度表,很可能不会直接关联,而是需要通过多层关联来达到,这为分析增加了很大的复杂度。

举例:想要从门店的地域分布来分析用户还款情况。基本的还款数据在订单细节表里,各种杂项信息在订单表里,门店信息在门店表里,地域信息在地域表里,这就意味着我们需要把这四张表关联起来,才能按门店地域来分析用户的还款情况。

此外,随着NoSQL数据库的进一步发展,有许多数据储存在诸如MongoDB等NoSQL数据库中,另外一些通用信息,如节假日等,通常也不会在数据库中有记录,而是以文本文件的形式储存。多种多样的数据储存方式,也给取数带来了困难,没法简单地用一条SQL完成数据查询。如果能把这些数据都整合到一个数据库里,比如构造一张节假日表。这样就能很方便地完成数据查询,从而提高分析效率。

  • 数据脏乱

因为业务数据库会接受大量用户的输入,如果业务系统没有做好足够的数据校验,就会产生一些错误数据,比如不合法的身份证号,或者不应存在的Null值,空字符串等。

  • 理解困难

业务数据库中存在大量语义不明的操作代码,比如各种状态的代码,地理位置的代码等等,在不同业务中的同一名词可能还有不同的叫法。

这些情况都是为了方便业务操作和开发而出现的,但却给我们分析数据造成了很大负担。各种操作代码必须要查阅文档,如果操作代码较多,还需要了解储存它的表。来自不同业务数据源的同义异名的数据更是需要翻阅多份文档。

  • 缺少历史

出于节约空间的考虑,业务数据库通常不会记录状态流变历史,这就使得某些基于流变历史的分析无法进行。比如想要分析从用户申请到最终放款整个过程中,各个环节的速度和转化率,没有流变历史就很难完成。

  • 大规模查询缓慢

当业务数据量较大时,查询就会变得缓慢。尤其需要同时关联好几张大表,比如还款表关联订单表再关联用户表,这个体量就非常巨大,查询速度非常慢。美好的青春都浪费在了等待查询结果上,真是令人叹息。

数据仓库解决方案

上面的问题,都可以通过一个建设良好的数据仓库来解决。

业务数据库是面向操作的,主要服务于业务产品和开发。而数据仓库则是面向分析的,主要服务于我们分析人员。评价数据仓库做的好不好,就看我们分析师用得爽不爽。因此,数据仓库从产品设计开始,就一直是站在分析师的立场上考虑的,致力于解决使用业务数据进行分析带来的种种弊端。

  • 结构清晰,简单

数据仓库的通常是一天变动一次,批量更新,由ETL系统完成。在这种情况下,数据的输入是高度可控的,所以不需要像业务数据库那样尽可能地减少数据冗余。自然地,数据模型就可以不遵循3NF范式,而是以分析方便为目的。

目前主流的数据模型就两种,E-R模型和维度模型。我在实践中主要采用维度模型。维度模型采用星形结构,表分两类——事实表和维度表。事实表处于星星的中心,储存能描述业务状况的各种度量数据,可以通过事实表了解业务状况。维度表则围绕着事实表,通过外键以一对一的形式相关联,提供看待业务状况的不同角度。相比业务数据库常用的E-R模型,星形结构更容易理解,更方便进行分析。

星形模型的特点是:使用方便,易于理解,聚焦业务。

当我们要做数据分析时,第一步是选定主题,比如要分析还款情况,逾期情况等等。接下去才是根据选定的主题来找到业务数据源,然后再看看业务数据源提供了哪些分析角度,最后导出数据进行分析。星形模型非常适合这个思路,并且大大简化了这个过程。

  • 可复用,易拓展

事实-多维度的星形结构,在便于理解和使用之外,还带来了额外的好处。一是可复用。比如日期维度表,不仅可被不同的事实表复用,在同一张事实表里也可被复用,分别用来表示各种不同操作的日期(订单日期、放款日期、应还日期、实还日期等等)。拓展也十分方便,直接在维度表里添加新的字段内容即可,只要保证维度数据的主键不变,添加新内容只会影响到维度表而已。而维度表通常数据量不大,即使完全重新加载也不需要花费多少时间。

  • 数据干净

在ETL过程中会去掉不干净的数据,或者打上脏数据标签,使用起来更为方便。

  • 数据语义化/统一描述

各种状态都可以直接写成具体的值,不再需要使用操作码进行查询,SQL语句更自然,更易理解。

对于部分常用的组合状态,可以合并成一个字段来表示。比如在还款分析中,需要根据还款状态、放款状态/发货状态的组合来筛选出有效的订单,可以直接设置一个订单有效的字段,简化筛选条件。

对于同一含义的数据在不同情境下的表示,也可以统一描述了。比如对于放款日期的描述,在产品是消费贷时,指的是发货的日期,产品是现金贷时,指的是放款给用户的日期。这两个日期都是表示放款日期,就可以统一起来,同样也简化了筛选条件。

  • 保存历史

数据仓库可通过拉链表的形式来记录业务状态变化,甚至可以设计专用的事实表来记录。只要有历史分析的需要,就可以去实现。比如,用户的手机号可能会变化,但我们通过缓慢变化维度类型2的设计,可以记录他完成同一类业务操作,比如申请贷款的操作时,不同的手机号。

  • 高速查询

数据仓库本身并不提供高速查询功能。只是由于其简单的星形结构,比业务数据库的复杂查询在速度上更有优势。如果仍然采用传统的关系型数据库来储存数据。在数据量上规模之后,同样也会遇到查询缓慢的问题。

但是,使用Hive来储存数据,再使用基于Hive构建的多维查询引擎Kylin,把星型模型下所有可能的查询方案的结果都保存起来,用空间换时间,就可以做到高速查询,对大规模查询的耗时可以缩短到次秒级,大大提高工作效率。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 银行业数据治理还面临着四方面的挑战

    银行业数据治理还面临着四方面的挑战

    一是数据整合度不高。银行内部数据虽多,涉及各个业务条线、各个部门,但未经系统化的治理,数据分布零散化,搜集整合存在错配,未能实现大数据集……查看详情

    发布时间:2019.11.29来源:知乎浏览量:136次

  • 企业为什么要进行数据资产管理?

    企业为什么要进行数据资产管理?

    ​随着大数据时代的来临,对数据的重视提到了前所未有的高度,“数据即资产”已经被广泛认可。数据就像企业的根基,是各企业尚待发掘的财富,即将……查看详情

    发布时间:2022.05.27来源:小亿浏览量:855次

  • 数据治理和数据管理不可互换

    数据治理和数据管理不可互换

    从什么时候开始数据管理和数据治理可以互换? 这个问题让我感到困惑和沮丧。追求数据管理供应商与业务利益相关者建立联系,因为业务部门在决策……查看详情

    发布时间:2018.11.20来源:Michele Goetz浏览量:137次

  • 数据治理流程

    数据治理流程

    数据治理流程必须通过TSDS数据治理流程审查TEA收集的所有数据。此过程允许用户监督 TEA如何从LEA收集立法规定的数据以及为stud……查看详情

    发布时间:2018.11.27来源:数据治理浏览量:205次

  • 如何选择数据治理工具

    如何选择数据治理工具

    有许多场景需要数据治理工具。在严格的行业法规下运营,利用分析软件和/或定期整合关键主题领域的数据的企业将发现自己正在寻找数据治理工具来帮……查看详情

    发布时间:2019.07.04来源:知乎浏览量:129次

  • 提升数据治理能力,构筑共治共享行业新生态

    提升数据治理能力,构筑共治共享行业新生态

    夯实数据治理之基,构筑良好的银行业数字化生态,数据治理构建开放的金融新生态,数据治理数据已成为银行业未来致胜的核心“资产”和竞争力。……查看详情

    发布时间:2020.01.03来源:知乎浏览量:231次

  • 数据治理的坑,你踩过多少?

    数据治理的坑,你踩过多少?

    大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大……查看详情

    发布时间:2020.06.29来源:CSDN浏览量:148次

  • 医疗领域的领导与治理

    医疗领域的领导与治理

    医疗保健领域的董事会感受到与其他类型组织相同的监管压力。对领导力和治理的重视使医疗保健委员会围绕董事会议席表示关注,目标是采取更强有力的……查看详情

    发布时间:2019.03.14来源:亿信华辰浏览量:150次

  • 谈谈数据治理是什么?

    谈谈数据治理是什么?

    数据治理这项工作一直都是存在的,和数据库设计的三范式一样都是为了数据的管理。数据治理是一整套完整的组织、制度、技术管理行为。……查看详情

    发布时间:2021.03.06来源:人人都是产品经理浏览量:153次

  • 2019年需要关注的三个治理趋势

    2019年需要关注的三个治理趋势

    通过精心应用RPA,优先考虑数据质量,并迎合不断变化的劳动力构成,数据专业人员可以有效地指导他们的组织进入数据驱动的未来。……查看详情

    发布时间:2018.12.20来源:亿信华辰浏览量:115次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议