数据质量分析主要包括那些内容?

发布时间:2019.11.13来源:知乎浏览量:217次标签:数据治理

数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。有了普遍深入的数据质量,企业在任何时候都可以信任满足所有需求的所有数据。

通常数据质量评估和管理评估需通过以下几个维度衡量。

数据质量评估

完整性 Completeness:完整性用于度量哪些数据丢失了或者哪些数据不可用。
规范性 Conformity:规范性用于度量哪些数据未按统一格式存储。
一致性 Consistency:一致性用于度量哪些数据的值在信息含义上是冲突的。
准确性 Accuracy:准确性用于度量哪些数据和信息是不正确的,或者数据是超期的。
唯一性 Uniqueness:唯一性用于度量哪些数据是重复数据或者数据的哪些属性是重复的。
关联性 Integration:关联性用于度量哪些关联的数据缺失或者未建立索引。

评估维度

配置管理 Config Management:此维度用于度量数据在其生命周期内的一切资源是否得到了控制和规范,即数据的计划、产生、变更直至消亡的过程中,与数据相关的计划、规范、描述是否收到控制。评估指标包括:评估配置项的细化粒度、评估基线准确度和频度以及变更流程是否合理完善等。

培训 Training:此维度用于度量数据的生产和使用者在数据生命周期内的一切活动中是否经过了知识和技能的培训、培训效果是否满足岗位需要;受训的知识和技能是否经过审核和确认,受训的内容是否与企业文化和价值观一致;培训流程是否合理完善等;

验证和确认 Verify & Validation:此维度用于度量数据在其生命周期内是否得到验证和确认。评估内容包括是否通过验证流程确保工作产品(数据)满足指定的要求、是否通过“确认”流程保证工作产品(数据)在计划的环境中满足使用的要求;“验证”和“确认”的流程是否完善;

监督和监控 Monitoring:此维度用于度量产生和使用数据的流程在数据的整个生命周期内是否真正受控。脱离监控的信息、技术、计划、流程、制度,会导致数据质量低下。监督和监控的流程是否完善。

亿信华辰EsDataClean数据质量管理平台,提供了业界领先的质量规则管理方法、质量评估方法、零编码质检规则、跨数据源比对、质量分析报告、数据质量整改、质量绩效评估等主要功能,以数据标准为数据检核依据,以元数据为数据检核对象,通过向导化、可视化等简易操作手段,将质量评估、质量检核、质量整改与质量报告等工作环节进行流程整合,形成完整的数据质量管理闭环。

再获嘉奖!亿信数据质量管理平台荣获2019中国数据质量优秀产品奖

在整个数据治理环节,亿信数据质量管理平台从找到问题数据开始,控制数据质量,贯彻始终,全面提升数据的完整性、规范性、及时性、一致性,减少因数据不可靠导致的决策偏差和损失。

亿信华辰EsDataClean数据质量管理平台,智能纠错减少数据异常,让数据清澈如水.
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 询问数据治理专家:我的数据治理计划需要多长时间?

    询问数据治理专家:我的数据治理计划需要多长时间?

    数据治理应该是您正在组织中实现和嵌入的东西,以便它像往常一样成为业务的一部分。出于这个原因,任何与我合作或参加我的培训课程的人都知道,我……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:194次

  • 数据质量和数据治理之间有什么区别?

    数据质量和数据治理之间有什么区别?

    跟上无穷无尽的技术术语可能是一项艰巨的任务。松散定义的术语和行业特定的白话使水更加泥泞。特别是在数据管理方面,似乎许多单词也可以互换使用……查看详情

    发布时间:2019.07.04来源:知乎浏览量:110次

  • 银行数据治理工作的落地面临着众多的困难与挑战

    银行数据治理工作的落地面临着众多的困难与挑战

    数据治理越来越受到银行、监管机构乃至国家层面的重视。银行已经意识到高效的管理体系、统一的数据标准、良好的数据质量才是数据价值实现的基础。……查看详情

    发布时间:2020.07.09来源:小亿浏览量:123次

  • 为什么数据治理很重要

    为什么数据治理很重要

    尽管许多企业的数据治理在被不经意间悄悄地忽视了,只有48%的企业拥有明确的规划或计划,但这并不影响数据治理的重要性,它聚焦于三个关键因素……查看详情

    发布时间:2020.07.10来源:CSDN浏览量:134次

  • 如何有效的进行数据治理?

    如何有效的进行数据治理?

    如果你处理或使用过大量数据,一定有听到过“数据治理”这个词。你会思考数据治理是什么?数据治理是否适合你?如何实施……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:134次

  • 重构数据治理的必要性

    重构数据治理的必要性

    拥有管理良好的数据资产并不能确切的保证你的生产业务价值。所以你就需要必备跨不同组件和活动的整体视图。那么这个时候数据治理就显得尤为重要。……查看详情

    发布时间:2018.11.14来源:马克·皮科浏览量:127次

  • 加强数据治理 护航数字经济

    加强数据治理 护航数字经济

    目前,我国正处在推动互联网、大数据、人工智能和实体经济深度融合的关键时期,个人数据滥采滥用、企业数据交易纠纷频发、公共数据开放开发滞后、……查看详情

    发布时间:2019.01.04来源:陆峰浏览量:87次

  • 2019年需要关注的三个治理趋势

    2019年需要关注的三个治理趋势

    通过精心应用RPA,优先考虑数据质量,并迎合不断变化的劳动力构成,数据专业人员可以有效地指导他们的组织进入数据驱动的未来。……查看详情

    发布时间:2018.12.20来源:亿信华辰浏览量:94次

  • 解析业务数据的特征——《企业大数据实践路线》

    解析业务数据的特征——《企业大数据实践路线》

    我们今天的内容是解析业务数据的特征。我们已经知道了数据从哪里来,也知道有什么数据,现在我们需要去分析一下这些数据的特征是什么,想想能在这……查看详情

    发布时间:2019.02.26来源:亿信华辰浏览量:105次

  • 未来,数据治理或将成为企业新的业务增长点

    未来,数据治理或将成为企业新的业务增长点

    大数据在我们中国发展的十年时间里面,从稚嫩逐渐走向成熟,现在已经比较普遍的应用于市场中,并且全球的IT企业很重视这方面。那么这些企业都普……查看详情

    发布时间:2019.09.20来源:知乎浏览量:114次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议