管理数据与拥有数据一样重要:关注数据治理和数据质量

发布时间:2019.09.20来源:知乎浏览量:7次标签:数据治理

在许多人看来,数据 - 干净,清晰和准确的数据 - 统治着宇宙。然而,当数据质量较差时,企业及其客户都会受到影响。即使数据是原始数据,糟糕的数据治理流程也会导致同样悲伤的痛苦。今天的最佳实践要求公司采用有意识的策略来确保信息的准确性和质量,并通过同样有意的数据治理政策和程序来保持这种质量。我定期为客户开展数据管理服务,并发现这样做不仅可以提供重要的保护,还可以提高企业的健康水平。
数据治理
数据质量的意义
高质量的数据为实现三个主要的企业目标奠定了基础:

1.增加公司收入
2.改善企业成本和复杂性的管理
3.降低和管理风险,包括确保合规性

简而言之,高质量的数据可以最大化现有数据的价值,从而提供最佳性能,并减少或消除用户对性能的障碍。一个干净的数据库减少了根据过时信息做出业务决策的可能性,这可能会增加成本,减缓生产并抑制增长。质量差可能会阻止处理链中的任何用户;它需要时间来找出那些数据错误,然后需要额外的时间来修复和恢复这些问题。没有公司有这么多时间。此外,人工智能(AI)等传入技术在数据干净且适当时效果最佳,因此确保数据质量高也可视为未来计算能力的基础。

数据质量差的原因

随着数据问题的出现和解决,研究人员通过分析无数的企业内爆和失败来解决这些问题。虽然每个故障都有其自身的原因,但大多数数据质量故障可分为三类:

数据采集
收集数据的方式可能会在它到达基础之前玷污它的质量。大多数组织都遭受手动数据输入引起的错误。有时,这是破坏信息的系统,通常是因为无法整合传入的数据。

数据处理
其他数字流程也会在数据通过数字公司星座时侵蚀数据质量。系统升级可能不包括旧数据方面。更新的数据本身可能无法进入相关基础,并且向传统整体添加新系统通常会损害现有数据和传入数据的处理。

数据管理不善
在这里,人为和电子错误的组合可以侵蚀数据库中的信息。如果您没有包含所有数据类型的明确计划,那么您的日常数据清理和清除操作可能会无意中丢弃旧的数据类型。

数据质量治理不良的意义

数据对于企业的成功同样重要,我与之合作过多的公司仍然没有全面的数据质量评估系统,即使那些公司也没有完全实现它,甚至可能忽略了它告诉他们的内容。通过忽视这一重要的企业资产,这些组织错失了增强其当前运营并发展成为新业务的机会。当您使用它时,高质量的数据治理可以识别过多或重复的支出,通过优化合规性实践来帮助维护企业声誉,甚至可以揭示在何处构建新产品或服务。我相信精心策划和执行的数据质量评估系统是实现这些目标的关键。

高质量数据治理实践的步骤

数据管理系统应监控所有三类数据状态的数据性能:其收集,处理和管理。综合系统应在收集数据时对其进行评估和同质化,然后检测处理过程中何时可能发生腐败或失败。您还可以使用功能完备的编程来帮助配置分辨率。最后但同样重要的是,系统还应该从其经验中“学习”并监控未来的处理活动,以避免过去的错误。最终,良好的数据治理实践应该实现并保持公司使用的所有数据资产的一致性和一致性。为此,您可以:

1.首先评估所有数据类型。
•质量问题(见上文);将质量评估,管理和监测纳入总体治理计划。
•通过数据整合注意事项解决信息的所有方面,包括元数据和主数据存储。
•请记住,数据保留和安全问题也是主要问题,不仅因为它们会保护您的企业,还因为它们将构成您的监管和合规性要求的基础。您的系统应监控数据生命周期所有阶段的所有数据。
•不要忘记报告属性。如果没有适当的报告工具和标准来澄清其可操作的相关性,您的数据就毫无意义。

2.评估数据管理系统。这个过程涉及谁使用数据,如何以及为什么。
•虽然几乎所有企业元素都依赖于数据,但大多数员工并未参与其管理。澄清每个部门中谁在数据使用中发挥关键作用并让他们参与评估讨论。
•另一个关键点是谁有权访问数据。务必确定敏感信息周围的墙壁和其他保护措施应存在的位置,以防止不必要的披露。
•随着工作人员加入和离开组织,用户也会随着时间的推移而变化。计划一个监控系统,当员工离开公司时触发清除。

3.通过在整个组织中采用“数据治理政策和实践”文化来确认您的新系统。

在开发数据管理系统时,将开发这个总体数据治理流程;记录它可以捕捉它对你的企业重要性的原因,方法和结果。计划每年评估一次;像其他一切一样,数据时代和需要不断监测和关注以保持其价值。

结论
尽管这些年过去了,但数据灾难仍在继续发生。通过密切关注您的公司信息及其管理方式,您可以确保您的企业避免遭受数据驱动的故障。此外,维护最佳数据管理和治理实践将确保您的组织始终优化其基本信息和情报。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 面对数据治理的挑战及难点,如何找到最佳方案?

    面对数据治理的挑战及难点,如何找到最佳方案?

    面对以上8点数据治理最佳实践方法,小编为您推荐一款好用的数据治理工具配合实施数据治理方案,不仅可以保证您的数据治理项目按计划实施,也可以……查看详情

    发布时间:2021.07.01来源:亿信数据治理知识库浏览量:5次

  • 企业架构框架和元模型,指南

    企业架构框架和元模型,指南

    与任何建筑或基础设施项目需要不同的利益相关者和不同的计划视图的方式大致相同,企业架构(EA)也需要相同。……查看详情

    发布时间:2019.02.26来源:亿信华辰浏览量:4次

  • 2018年中国大数据交易产业十大事件

    2018年中国大数据交易产业十大事件

    凡是过去,皆为序章。中国大数据交易产业2018年大事频出,国家大数据(贵州)综合试验区“大数据资源流通”取得新进展,2018第四届中国(……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:9次

  • 数字化转型的缺失部分:公民开发者

    数字化转型的缺失部分:公民开发者

    随着第四次工业革命席卷全球,新技术渗透到从高层城市到小村庄的各个方面。消费者的需求和期望随着技术的发展而增加,迫使企业以更快的速度提供优……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:5次

  • 如何做好大数据的质量管理?

    如何做好大数据的质量管理?

    如今关于大数据的话题非常火热,关于但数据的质量问题也备受人们关注,有很多IT人士开始认为,在大数据的时代,只有对数据进行有效的管理,那么……查看详情

    发布时间:2019.07.26来源:知乎浏览量:4次

  • 数据治理流程中,最重要的3点都在这

    数据治理流程中,最重要的3点都在这

    数据治理能够带来的好处就在于,更高效地帮助企业将数据价值转化成实际的业务价值。数据“井喷”仍在进行,机器学习、AI等这类十分依赖数据质量……查看详情

    发布时间:2021.05.10来源:亿信数据治理知识库浏览量:4次

  • 数据治理概述

    数据治理概述

    每天,大学的数据都会被评估,创建,使用,存储,存档,报告或删除。数据治理为罗切斯特的这些信息的定义,交换,完整性和安全性设定了标准和协议……查看详情

    发布时间:2018.11.26来源:数据治理浏览量:7次

  • 数据资产管理“管”什么

    数据资产管理“管”什么

    目前,数据资产管理已经形成了一套科学的管理架构体系,其体系架构如下图所示,主要包含9个活动职能和2个保障措施,9个活动职能指的是数据标准……查看详情

    发布时间:2020.09.11来源:知乎浏览量:11次

  • 数据标准管理平台解决方案

    数据标准管理平台解决方案

    企业内部开展企业数据资源整合工作,实现对企业核心业务、核心资源的综合管控,是企业信息化的一个核心目标。通过体系化的数据资源管理平台的建设……查看详情

    发布时间:2020.04.28来源:知乎浏览量:2次

  • 什么是数据交换管理平台?

    什么是数据交换管理平台?

    首先来个比较官方的定义,数据交换管理平台是指将分散建设的若干业务系统进行整合,以实现若干个业务子系统之间数据或者文件的传输和共享,提高信……查看详情

    发布时间:2020.04.22来源:知乎浏览量:2次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议