管理数据与拥有数据一样重要:关注数据治理和数据质量

发布时间:2019.09.20来源:知乎浏览量:177次标签:数据治理

在许多人看来,数据 - 干净,清晰和准确的数据 - 统治着宇宙。然而,当数据质量较差时,企业及其客户都会受到影响。即使数据是原始数据,糟糕的数据治理流程也会导致同样悲伤的痛苦。今天的最佳实践要求公司采用有意识的策略来确保信息的准确性和质量,并通过同样有意的数据治理政策和程序来保持这种质量。我定期为客户开展数据管理服务,并发现这样做不仅可以提供重要的保护,还可以提高企业的健康水平。
数据治理
数据质量的意义
高质量的数据为实现三个主要的企业目标奠定了基础:

1.增加公司收入
2.改善企业成本和复杂性的管理
3.降低和管理风险,包括确保合规性

简而言之,高质量的数据可以最大化现有数据的价值,从而提供最佳性能,并减少或消除用户对性能的障碍。一个干净的数据库减少了根据过时信息做出业务决策的可能性,这可能会增加成本,减缓生产并抑制增长。质量差可能会阻止处理链中的任何用户;它需要时间来找出那些数据错误,然后需要额外的时间来修复和恢复这些问题。没有公司有这么多时间。此外,人工智能(AI)等传入技术在数据干净且适当时效果最佳,因此确保数据质量高也可视为未来计算能力的基础。

数据质量差的原因

随着数据问题的出现和解决,研究人员通过分析无数的企业内爆和失败来解决这些问题。虽然每个故障都有其自身的原因,但大多数数据质量故障可分为三类:

数据采集
收集数据的方式可能会在它到达基础之前玷污它的质量。大多数组织都遭受手动数据输入引起的错误。有时,这是破坏信息的系统,通常是因为无法整合传入的数据。

数据处理
其他数字流程也会在数据通过数字公司星座时侵蚀数据质量。系统升级可能不包括旧数据方面。更新的数据本身可能无法进入相关基础,并且向传统整体添加新系统通常会损害现有数据和传入数据的处理。

数据管理不善
在这里,人为和电子错误的组合可以侵蚀数据库中的信息。如果您没有包含所有数据类型的明确计划,那么您的日常数据清理和清除操作可能会无意中丢弃旧的数据类型。

数据质量治理不良的意义

数据对于企业的成功同样重要,我与之合作过多的公司仍然没有全面的数据质量评估系统,即使那些公司也没有完全实现它,甚至可能忽略了它告诉他们的内容。通过忽视这一重要的企业资产,这些组织错失了增强其当前运营并发展成为新业务的机会。当您使用它时,高质量的数据治理可以识别过多或重复的支出,通过优化合规性实践来帮助维护企业声誉,甚至可以揭示在何处构建新产品或服务。我相信精心策划和执行的数据质量评估系统是实现这些目标的关键。

高质量数据治理实践的步骤

数据管理系统应监控所有三类数据状态的数据性能:其收集,处理和管理。综合系统应在收集数据时对其进行评估和同质化,然后检测处理过程中何时可能发生腐败或失败。您还可以使用功能完备的编程来帮助配置分辨率。最后但同样重要的是,系统还应该从其经验中“学习”并监控未来的处理活动,以避免过去的错误。最终,良好的数据治理实践应该实现并保持公司使用的所有数据资产的一致性和一致性。为此,您可以:

1.首先评估所有数据类型。
•质量问题(见上文);将质量评估,管理和监测纳入总体治理计划。
•通过数据整合注意事项解决信息的所有方面,包括元数据和主数据存储。
•请记住,数据保留和安全问题也是主要问题,不仅因为它们会保护您的企业,还因为它们将构成您的监管和合规性要求的基础。您的系统应监控数据生命周期所有阶段的所有数据。
•不要忘记报告属性。如果没有适当的报告工具和标准来澄清其可操作的相关性,您的数据就毫无意义。

2.评估数据管理系统。这个过程涉及谁使用数据,如何以及为什么。
•虽然几乎所有企业元素都依赖于数据,但大多数员工并未参与其管理。澄清每个部门中谁在数据使用中发挥关键作用并让他们参与评估讨论。
•另一个关键点是谁有权访问数据。务必确定敏感信息周围的墙壁和其他保护措施应存在的位置,以防止不必要的披露。
•随着工作人员加入和离开组织,用户也会随着时间的推移而变化。计划一个监控系统,当员工离开公司时触发清除。

3.通过在整个组织中采用“数据治理政策和实践”文化来确认您的新系统。

在开发数据管理系统时,将开发这个总体数据治理流程;记录它可以捕捉它对你的企业重要性的原因,方法和结果。计划每年评估一次;像其他一切一样,数据时代和需要不断监测和关注以保持其价值。

结论
尽管这些年过去了,但数据灾难仍在继续发生。通过密切关注您的公司信息及其管理方式,您可以确保您的企业避免遭受数据驱动的故障。此外,维护最佳数据管理和治理实践将确保您的组织始终优化其基本信息和情报。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的3W1H:治什么?谁来治?怎么治?选哪个?

    数据治理的3W1H:治什么?谁来治?怎么治?选哪个?

    数据治理是一个通过一系列信息相关的过程来实现决策权和职责分工的系统,这些过程按照达成共识的模型来执行,该模型描述了谁能根据什么信息,在什……查看详情

    发布时间:2021.04.23来源:浏览量:190次

  • 数据治理的发展历程

    数据治理的发展历程

    数据治理技术的发展使得其中最好的技术为组织的数据景观提供了完全的透明性,并为业务用户在搜索、访问和应用数据时提供了一种方便快捷的体验。……查看详情

    发布时间:2018.11.19来源:艾米丽华盛顿浏览量:190次

  • 数据治理——精细科学的政策平衡

    数据治理——精细科学的政策平衡

    数据泄露、滥用、歧视这些负面事件如同天空中的阴霾,不断加深着人们对数据治理的悲观情绪。   的确,这一年被数据泄露贯穿始终,规模日……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:124次

  • 医疗领域的数据治理

    医疗领域的数据治理

    数据治理将为患者和护理人员实现价值。医疗保健系统和提供者越来越关注使用证据来为临床和运营决策提供信息的需求。这导致他们组装并批判性地评估……查看详情

    发布时间:2018.11.20来源:Lydia Lee浏览量:155次

  • 数据分析加数据治理-让数据清澈如水

    数据分析加数据治理-让数据清澈如水

    在如今数据大浪潮下,如果您的业务很多,那么它就会大量堆积并且产生新的问题。我们生活在一个数据驱动的世界里。数据推动了我们从不同地方获得的……查看详情

    发布时间:2019.08.30来源:浏览量:185次

  • 数据与数据治理两个基本概念

    数据与数据治理两个基本概念

    数据治理这项基础数据能力的重要性越来越多突出。2017年4月22日,中国数据标准化及治理奖实践奖的现场评审在清华大学成功举行。……查看详情

    发布时间:2018.11.30来源:御数坊浏览量:143次

  • 大数据技术学习,深度挖掘大数据的现状分析

    大数据技术学习,深度挖掘大数据的现状分析

    企业级技术 = 艰苦的工作 其实大数据有趣的是它不是直接可以炒作的东西。 能够获得广泛兴趣的产品和服务往往是那些人们可以触摸……查看详情

    发布时间:2019.03.20来源:亿信华辰浏览量:182次

  • 影响企业大数据分析的三大误区

    影响企业大数据分析的三大误区

    我们现在身处一个虚拟时空交易与现实时空交付的数字化时代。数字化正在各行业快速发展,许多企业将会经历前所未有的改变。数据正发挥着越来越重要……查看详情

    发布时间:2022.03.08来源:小亿浏览量:175次

  • 数据治理:一些美好的开始

    数据治理:一些美好的开始

    数据治理增强了业务参与,共享理解,关注和协调,将日益脱节的数据环境结合在一起,并在许多EDM计划中提供数据值优化。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:182次

  • 灵活的分析数据生命周期?

    灵活的分析数据生命周期?

    受监管实验室数据完整性指南的要求之一是数据生命周期,涵盖监管记录的生死。数据生命周期在最近的MHRA数据完整性指南中定义为“从生成和记录……查看详情

    发布时间:2018.12.27来源:数据治理浏览量:169次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议