数据治理与数据质量有何不同?

发布时间:2019.06.25来源:知乎浏览量:275次标签:数据治理

数据治理

当我们听到数据管理这些词时,“ 数据质量 ”和“数据治理” 这两个术语出现了很多,它们应该是因为这些是确保组织以最佳方式利用其信息的重要功能。


问题是,这些术语经常互换使用。更糟糕的是,他们习惯于在数据操作中建议可能实际上不存在的层次结构。例如,有些人认为数据质量仅仅是数据治理的一个组成部分,它无法使质量得到应有的重视。


当然,数据质量和治理在数据驱动的组织中起着至关重要的作用。然而,他们的角色和责任是完全不同的。


差异在于名称

数据质量旨在确保组织拥有的所有数据完整,准确,并为业务用户分析,共享,转化为决策洞察力等做好准备。数据质量始终非常重要。但随着公司从越来越多的来源以及各种格式收集越来越多的数据,数据质量的战略价值也急剧上升。


如今,组织从多个企业应用程序,网站,移动设备和社交网络收集数据。随着物联网(IoT)的增长及其无数连接对象的产生和共享信息,数据量可能会进一步增加。最近的一项研究测到2020年将有204亿个连接设备,因此组织必须拥有强大的数据质量流程,以确保数据的海啸保持清洁和最新。


数据治理与创建组织将使用数据的框架和规则有关。因此,其目的与数据质量完全不同。虽然数据治理在某些企业仍被视为基于IT的功能,但其当前的主要作用是确保必要的数据通知关键业务功能。


一种简单的方法来区分两者之间的关系,看看它们是否可以是一个独立的功能。数据质量有一个基本目的:收集和清理数据并确保数据的完整性,及时性和准确性。如果没有质量数据来构建框架,就没有理由拥有数据治理流程。实质上,如果没有稳定的质量数据供应,数据治理就变得毫无意义。


数据质量和治理是具有根本不同职责的补充功能。真的没有理由混淆两者。可以肯定的是,数据治理对于组织来说非常重要,特别是随着数据和数据源的数量不断增长,信息资源在业务运营和成功中发挥着越来越重要的作用。忽略数据治理是为了欢迎诸如对数据资源缺乏控制,数据滥用,安全和隐私漏洞,集成问题,不遵守法规等问题。


除了理解两个以数据为中心的学科之间的差异之外,组织必须真正掌握数据质量对其成功的重要性。


数据质量应该是任何企业的战略重点。进入组织的大部分数据都是不完整或不准确的,因此在将数据用于分析之前,公司必须采用流程和工具来清理数据,尤其是在最终用于客户约束时。忽视数据质量有一个巨大的缺点。这可能导致收入大幅下降,客户服务质量下降,竞争优势丧失,品牌受损以及其他负面影响。


数据质量管理需要什么?

 可靠的数据质量管理战略应包括三个主要组成部分:获得业务规则的组织一致性; 采用正确的技术来管理数据质量; 并投入所需的时间和人力资源来维持数据质量。


对于希望利用客户数据作为战略优势的公司而言,这些都非常重要。需要进行组织协调,因为高质量的数据对组织的不同部分意味着不同的东西,无论是销售、人力资源、产品开发还是其他领域。整个组织应就在确定数据质量时使用哪些业务规则达成一致。


拥有合适的技术可以使数据质量管理更容易,成本更低。令人惊讶的是,许多组织继续使用电子表格和数据管理流程手动管理数据质量,这些流程需要大量的人工输入,因此是劳动密集型且成本高昂的。如今,要在许多公司所需的水平上有效地进行数据质量管理,需要自动化,而这需要使用正确的技术。


尽管许多数据质量任务都可以自动化,但组织仍然必须投入成功管理流程所需的时间和资源。人们需要定义业务规则,选择和使用正确的软件,并监督整个过程。


管理数据质量是IT组织目前面临的最具挑战性的过程之一,鉴于数据量和数据来源不断增长,这一过程并不容易。许多企业面临数据质量问题,其特征是数据冗余,数据不完整或缺失,数据过时,缺乏数据标准,以及不同系统的记录字段解析不当。


这些都是重大挑战。质量差的数据可能会破坏业务计划,并导致整个组织的生产力下降。如果未解决数据质量问题,分析师,管理人员和其他业务用户将无法从数据中获得最佳价值,也无法从数据中获得洞察力。


幸运的是,通过适当的流程,技术和资源,组织可以增强其数据质量工作。鉴于他们在数据管理,挖掘和分析工具方面所做的重大投资,提高数据质量是一项合理的商业决策,应该能够提供可靠的回报。


数据治理需要什么?
睿治
亿信华辰—睿治
数据治理的五个核心要素
·明确数据治理责任,建立数据治理组织

·管理出成效,制度是保障

·数据规范:没有规矩,不成方圆

·数据治理活动,理论结合实践

·数据治理软件:工欲善其事,必先利其器

利用数据治理软件主要解决企业不同来源数据集成过程中遇到的问题,需要数据治理软件能够为企业提供统一的元数据集成、数据标准管理、数据模型设计、数据质量稽核、数据资产目录、数据分析服务等能力。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据标准化的难题

    数据标准化的难题

    数据标准好制定,但是数据标准落地相对就困难多了。国内的数据标准化工作发展了那么多年,各个行业,各个组织都在建设自己的数据标准,但是你很少……查看详情

    发布时间:2019.12.20来源:知乎浏览量:141次

  • 数据治理方法 | 美国高校数据治理方法借鉴

    数据治理方法 | 美国高校数据治理方法借鉴

    高等教育中的数据治理是一种风险管理工具,可促进家庭教育和监管合规性,因为它旨在保护隐私和敏感信息。最后,数据是一种资产,如果使用得当,可……查看详情

    发布时间:2021.06.02来源:亿信华辰数据治理知识库浏览量:143次

  • 定义DG:数据治理可以为您做什么?

    定义DG:数据治理可以为您做什么?

    由于数据驱动的业务,数据治理(DG)变得越来越普遍,但是对于许多组织来说,定义DG并进行合理的实践仍然很困难。……查看详情

    发布时间:2019.01.21来源:亿信华辰浏览量:201次

  • 什么是数据治理?

    什么是数据治理?

    关于数据治理,我需要了解什么?数据治理要求组织了解并评估其数据必须满足的法规要求,法律要求和业务最佳实践,建立规则,并采用自动化和人工流……查看详情

    发布时间:2018.11.16来源:互联网浏览量:146次

  • 用大数据助力治理现代化

    用大数据助力治理现代化

    “要运用大数据提升国家治理现代化水平”“要建立健全大数据辅助科学决策和社会治理的机制,推进政府管理和社会治理模式创新”,习近平总书记的重……查看详情

    发布时间:2019.10.17来源:知乎浏览量:122次

  • 数据中台和业务中台的区别

    数据中台和业务中台的区别

    数据中台是什么?数据中使前台更智慧。当然它也可以加快前台的开发速度,但它更重要的是使前台更智慧。业务系统,原来是跨类的,是分领域的财务系……查看详情

    发布时间:2021.01.23来源:头条浏览量:165次

  • 医疗保健中数据治理的7个基本实践

    医疗保健中数据治理的7个基本实践

    数据现在是任何组织中最有价值的资产之一,尤其是医疗保健,因为我们正在转向更具分析性的行业。数据现在是任何组织中最持久的资产,超过设施,设……查看详情

    发布时间:2018.12.27来源:数据治理浏览量:158次

  • 数据治理运营:团队

    数据治理运营:团队

    这是关于数据治理运作的两部分系列的第二部分。“ 数据治理运作:差距 ”系列的第一部分讨论了需求是如何产生的,数据治理运营所需的一些主要原……查看详情

    发布时间:2018.11.14来源:Jayakumar Rajaretnam浏览量:145次

  • 一个通用的数据中台架构应该如何构建,本文告诉你答案

    一个通用的数据中台架构应该如何构建,本文告诉你答案

    这两年,越来越多的大数据从业者提到“数据中台”的概念。在信息系统建设工作中,我们熟知系统可以分为前台和后台,但什么是中台,每个人的理解并……查看详情

    发布时间:2020.09.14来源:小亿浏览量:142次

  • 数据治理-数据治理标准化的价值

    数据治理-数据治理标准化的价值

    标准的数据指标体系为各主题的数据分析提供支持,提升数据处理和分析效率,提供业务指标的事前提示、事中预警、事后提醒,实现数据驱动管理,帮助……查看详情

    发布时间:2020.11.08来源:知乎浏览量:123次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议