数据治理活跃在企业的方方面面

发布时间:2019.03.13来源:亿信华辰浏览量:107次标签:数据治理


我们都知道数据治理存在感知问题(温和地说)。真正的数据治理是对任何和所有数据管理活动的控制和支持。但是,数据领导者常常关注控制角度或从技术数据管理角度处理问题,从而导致缺陷。对于一些人来说,它让人想起警察和官僚机构的形象。他们对被困在黑暗地下墓穴中的数据视而不见,只有经过数月的繁文缛节才能进入。对于其他人来说,他们痛苦地记得他们浪费精力参加会议,更新电子表格和维护维基,只是为了得知没有人利用他们的辛勤工作。

难怪数据治理有一个糟糕的说唱。尽管它提供了真正的价值,但由于过去的错误经验,组织回避实施治理。想象一下下面的场景,看看是否听起来很熟悉。

贵公司正在启动一个建立新数据湖的项目。每个人都对这个项目感到非常兴奋,因为人们最终会在一个地方找到他们的所有数据,用于报告,商业智能(BI),分析等等。

在启动会议期间,一切都进行得很顺利,直到有人通过建议您将数据治理纳入项目而将空气排出房间。人们不安地环顾四周,直到反对者说出来并说“没办法 - 治理不起作用。这只是一堆充满理论的幻灯片!“然后其他人插话:”它可以工作,但肯定听起来像是很多工作。这将减缓我们的项目。“为数据治理打一场。

该项目向前推进 - 没有数据治理 - 几个月后,湖泊开始出现衰退的迹象。曾经原始的湖泊变得模糊不清,数据质量差,副本太多。有人大胆地提出了数据治理的想法。这一次,执行冠军在船上。他告诉团队将理论幻灯片转换为电子表格,安排每月管理会议并使用维基创建协作环境。听起来很棒,直到三个月后,没有人出席会议。电子表格变得令人沮丧地复杂,并沉入到重载收件箱的底部。最后一根稻草是当人们停止信任狂野的西维基时。这是数据治理的第二个问题。

快进六个月。数据湖项目继续取得进展。随着每一天的过去,湖泊变得更像沼泽。群集总是渴望更多节点。团队很紧张。他们看到金钱在排水沟中流淌而没有真正的价值来展示它。其余的数据科学家也越来越有声音。他们抱怨说他们把所有时间花在搜索数据上,这完全是他们的天赋浪费。更糟糕的是,他们发现的一些见解从来没有对业务产生影响 - 那些做不到的人。他们开始喃喃地说,如果事情不会很快改变,他们就会把他们的才能带到别处。

显然,该团队正处于十字路口。我们的数据治理信徒仍然知道治理可能是一个答案。她没有再次使用数据治理角,而是采取了不同的方法:“让我们在湖周围包装数据目录。”该目录将帮助确定湖中的数据,含义,拥有者,使用者它甚至可能来自它。目录还可以帮助确定湖中是否存在不应存在的数据 - 以及谁负责将受保护,重复或质量差的数据倾倒到水晶般清澈的湖中。

数据湖团队热情地倾斜。这个“数据目录”可能是他们一直在寻找的答案。它将帮助他们清理肮脏的湖泊,并确保在正确的时间只在正确的地方找到正确的数据。不仅如此,目录还可以使所有数据易于查找,易于理解且易于信任 - 适用于业务中的每个人。

我们的数据治理冠军成为项目的英雄,但不是因为她继续推动治理议程。她看到了写在墙上的文字:团队对过去经历中的治理持否定态度,并且不愿意再次尝试。他们认为治理会锁定数据并减慢数据。他们看到了很多毫无意义的工作,看不到治理可以提供的价值,直到它以一种与他们的挑战产生共鸣的方式呈现给他们。

如果您面临的情况类似于我刚才描述的情况,我建议您重新考虑您的治理方法。当没有治理失败的项目失败时,说“我告诉过你”不会赢得任何朋友,但狂热地推动治理议程也不是答案。相反,回到治理。向同事展示现代数据治理如何打开数据并推动整个企业的可信协作。

数据治理似乎已经死亡,但事实并非如此。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 利用数据治理重新定义数据架构

    利用数据治理重新定义数据架构

    数据和数据管理的重要性,价值和责任正在迅速增加。……查看详情

    发布时间:2019.01.16来源:亿信华辰浏览量:191次

  • 数据质量对数据治理的重要性!

    数据质量对数据治理的重要性!

    人常说“失之毫厘,差之千里”,在数据来源多样化的情况下,数据的可靠性和实用性,直接影响到统计分析是否得到正确的结论,所以说数据的质量尤为……查看详情

    发布时间:2019.11.01来源:知乎浏览量:146次

  • 为什么你应该有一个数据治理策略

    为什么你应该有一个数据治理策略

    有效的数据治理也是一个持续的过程。政策定义,审查,调整和审计以及合规审查和质量控制都会作为数据治理生命周期经常受到影响或重复。因此,数据……查看详情

    发布时间:2019.03.08来源:亿信华辰浏览量:163次

  • 数据资产管理领域重要的三个方向

    数据资产管理领域重要的三个方向

    数据资产管理领域重要的三个方向包括:资产分析、资产治理、资产应用,并需要基于这三个方向的技术研究和实战,将流程、经验、标准和规范等产品化……查看详情

    发布时间:2020.11.06来源:知乎浏览量:112次

  • 8 项提高数据完整性的预防性措施

    8 项提高数据完整性的预防性措施

    仅使用一种方法几乎不可能将数据完整性风险降至最低,因此使用多种策略的组合是更好的选择。降低数据完整性风险的一些最有效方法包括8点。……查看详情

    发布时间:2021.07.07来源:亿信华辰数据治理知识库浏览量:666次

  • 企业构建数据中台是否存在一个量化或判断的标准?

    企业构建数据中台是否存在一个量化或判断的标准?

    对这个问题有几种解读,第一种解读是说企业是否要构建自己的数据中台,这个问题有没有标准?以这个问题来讲的话,我们认为所有的企业它都需要数据……查看详情

    发布时间:2021.01.23来源:知乎浏览量:168次

  • 数据治理和安全

    数据治理和安全

    从组织的角度来看,通过人力资源技术传递的数据需要尽可能保持清洁,一致和可转移。问题?多个系统,手动流程和其他低效率需要清理脏数据,稍后从……查看详情

    发布时间:2018.12.04来源:数据治理浏览量:228次

  • 数据治理项目的实现需要的核心要素之一

    数据治理项目的实现需要的核心要素之一

    数据治理是长期、复杂的工程,每个数据治理的领域都可作为一个独立方向进行研究,目前总结的数据治理领域包括但不限于以下内容:数据标准、数据模……查看详情

    发布时间:2020.03.26来源:知乎浏览量:126次

  • 数据科学趋势在2019年

    数据科学趋势在2019年

    在谈到2019年要关注的主要数据科学趋势时,Kaggle的联合创始人兼首席执行官Anthony Goldbloom 预测,很快数据中心将……查看详情

    发布时间:2019.01.04来源:数据治理浏览量:105次

  • 数据治理—设计利用数据

    数据治理—设计利用数据

    围绕数据使用创建系统和流程是一回事,但企业需要确保其基础架构和团队随时可以利用可用信息。……查看详情

    发布时间:2019.04.04来源:亿信华辰浏览量:135次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议