数据治理活跃在企业的方方面面

发布时间:2019.03.13来源:亿信华辰浏览量:106次标签:数据治理


我们都知道数据治理存在感知问题(温和地说)。真正的数据治理是对任何和所有数据管理活动的控制和支持。但是,数据领导者常常关注控制角度或从技术数据管理角度处理问题,从而导致缺陷。对于一些人来说,它让人想起警察和官僚机构的形象。他们对被困在黑暗地下墓穴中的数据视而不见,只有经过数月的繁文缛节才能进入。对于其他人来说,他们痛苦地记得他们浪费精力参加会议,更新电子表格和维护维基,只是为了得知没有人利用他们的辛勤工作。

难怪数据治理有一个糟糕的说唱。尽管它提供了真正的价值,但由于过去的错误经验,组织回避实施治理。想象一下下面的场景,看看是否听起来很熟悉。

贵公司正在启动一个建立新数据湖的项目。每个人都对这个项目感到非常兴奋,因为人们最终会在一个地方找到他们的所有数据,用于报告,商业智能(BI),分析等等。

在启动会议期间,一切都进行得很顺利,直到有人通过建议您将数据治理纳入项目而将空气排出房间。人们不安地环顾四周,直到反对者说出来并说“没办法 - 治理不起作用。这只是一堆充满理论的幻灯片!“然后其他人插话:”它可以工作,但肯定听起来像是很多工作。这将减缓我们的项目。“为数据治理打一场。

该项目向前推进 - 没有数据治理 - 几个月后,湖泊开始出现衰退的迹象。曾经原始的湖泊变得模糊不清,数据质量差,副本太多。有人大胆地提出了数据治理的想法。这一次,执行冠军在船上。他告诉团队将理论幻灯片转换为电子表格,安排每月管理会议并使用维基创建协作环境。听起来很棒,直到三个月后,没有人出席会议。电子表格变得令人沮丧地复杂,并沉入到重载收件箱的底部。最后一根稻草是当人们停止信任狂野的西维基时。这是数据治理的第二个问题。

快进六个月。数据湖项目继续取得进展。随着每一天的过去,湖泊变得更像沼泽。群集总是渴望更多节点。团队很紧张。他们看到金钱在排水沟中流淌而没有真正的价值来展示它。其余的数据科学家也越来越有声音。他们抱怨说他们把所有时间花在搜索数据上,这完全是他们的天赋浪费。更糟糕的是,他们发现的一些见解从来没有对业务产生影响 - 那些做不到的人。他们开始喃喃地说,如果事情不会很快改变,他们就会把他们的才能带到别处。

显然,该团队正处于十字路口。我们的数据治理信徒仍然知道治理可能是一个答案。她没有再次使用数据治理角,而是采取了不同的方法:“让我们在湖周围包装数据目录。”该目录将帮助确定湖中的数据,含义,拥有者,使用者它甚至可能来自它。目录还可以帮助确定湖中是否存在不应存在的数据 - 以及谁负责将受保护,重复或质量差的数据倾倒到水晶般清澈的湖中。

数据湖团队热情地倾斜。这个“数据目录”可能是他们一直在寻找的答案。它将帮助他们清理肮脏的湖泊,并确保在正确的时间只在正确的地方找到正确的数据。不仅如此,目录还可以使所有数据易于查找,易于理解且易于信任 - 适用于业务中的每个人。

我们的数据治理冠军成为项目的英雄,但不是因为她继续推动治理议程。她看到了写在墙上的文字:团队对过去经历中的治理持否定态度,并且不愿意再次尝试。他们认为治理会锁定数据并减慢数据。他们看到了很多毫无意义的工作,看不到治理可以提供的价值,直到它以一种与他们的挑战产生共鸣的方式呈现给他们。

如果您面临的情况类似于我刚才描述的情况,我建议您重新考虑您的治理方法。当没有治理失败的项目失败时,说“我告诉过你”不会赢得任何朋友,但狂热地推动治理议程也不是答案。相反,回到治理。向同事展示现代数据治理如何打开数据并推动整个企业的可信协作。

数据治理似乎已经死亡,但事实并非如此。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 2021数据治理如何让数据产生价值

    2021数据治理如何让数据产生价值

    众所周知,2020年新冠疫情爆发以来,“健康码”已常态化的出现在大家的日常生活中,这个全民参与其中的数字化疫情防控手段背后正是“数据治理……查看详情

    发布时间:2021.04.14来源:亿信数据治理知识库浏览量:196次

  • 数据治理如何解决数据多、杂、乱、差问题?

    数据治理如何解决数据多、杂、乱、差问题?

    许多大数据公司在过去一段时间都得到了较好的发展,但由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理……查看详情

    发布时间:2022.02.21来源:小亿浏览量:363次

  • 构建成功的数据治理策略

    构建成功的数据治理策略

    随着组织继续努力解决他们的分析过程,他们开始意识到他们需要退后一步,从头开始重新思考他们的数据策略。当他们这样做,并从一开始就通过良好的……查看详情

    发布时间:2019.02.27来源:亿信华辰浏览量:210次

  • 启动数据治理框架以取得成功

    启动数据治理框架以取得成功

    许多企业坚持不懈地尝试用数据治理框架来证明自己已经取得了很大的成就。然而,定义那些“伟大的东西”绝非易事 - 因为它们中的大多数只构建了……查看详情

    发布时间:2019.02.13来源:数据治理浏览量:145次

  • 云,基础设施现代化和数据治理定义了2019年的IT成功

    云,基础设施现代化和数据治理定义了2019年的IT成功

    随着新兴数据技术的优先事项和采用不断升级,IT正在发生变化,挑战也在不断增加。……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:149次

  • 数据质量管理方法

    数据质量管理方法

    数据质量闭环管理机制以制定规则、问题发现、质量剖析、数据清理、评估验证、持续监控为核心活动,又结合银行的数据实践进行了定制和优化。……查看详情

    发布时间:2019.11.15来源:知乎浏览量:269次

  • 我国数据治理面临的现实挑战

    我国数据治理面临的现实挑战

    数据驱动的经济社会数字化转型,既充分释放了来自数据创造价值的潜力、提高了劳动生产率和治理效率,也带来了前所未有的现实挑战。如何既促发展又……查看详情

    发布时间:2020.10.31来源:知乎浏览量:132次

  • 数据科学的下一个「超能力」:模型可解释性

    数据科学的下一个「超能力」:模型可解释性

    很多人重视重视模型的预测能力,却忽略了模型可解释性的重要性,只知其然而不知其所以然。为什么说模型的可解释性这么重要呢?作者就 5 个方面……查看详情

    发布时间:2019.03.28来源:亿信华辰浏览量:139次

  • 2018年十大科技趋势与其对IT和执行的影响

    2018年十大科技趋势与其对IT和执行的影响

    消失中的企业数据中心(DisappearingEnterpriseDataCenters)目前在中国,大型企业自建并管理数据中心仍是主流……查看详情

    发布时间:2019.01.03来源:Gartner浏览量:130次

  • 如今传统企业如何做数字化转型?

    如今传统企业如何做数字化转型?

    什么是数字化转型?“数字化转型”实际上就是对业务过程进行的重塑,通过重塑使其默认就更加适应更全面的在线环境,从最……查看详情

    发布时间:2020.07.31来源:知乎浏览量:131次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议