数据治理2.0:2018年最值得关注的数据

发布时间:2019.01.25来源:亿信华辰浏览量:194次标签:数据治理


今年,我们将在震中的Data Governance 2.0中看到我们收集,存储和使用数据的方式发生了巨大变化。对于许多组织而言,这些变化将是被动的,因为它们必须适应新的法规。其他人将使用监管变革作为催化剂,积极主动地使用他们的数据。理想情况下,你会想要属于后一类。

数据驱动型企业及其相关行业正在经历前所未有的变化。

近年来不仅数据量激增,我们现在也看到数据提供的数量也在增加。从本质上讲,我们发现较小的数据单元更有用,但收集的数据比以往任何时候都多。

目前,数据机会似乎无边无际,我们几乎没有开始划清界限。所以这是2018年预期的一些最大的数据改变。

GDPR

通用数据保护条例(GDPR)具有组织扰。对违规行为的处罚将于5月25日立即生效,罚款高达2000万欧元,占该公司全球年营业额的4%,以较高者为准。

虽然这是欧洲的授权,但事实是所有与欧洲交易的组织,不仅仅是非洲大陆的组织,都必须遵守。正因为如此,我们正在全球范围内努力引入新的政策,程序和系统,以便按照自Y2K以来从未见过的规模进行准备。

很容易将这种性质的强制性变化视为负担。但从监管和商业角度来看,这种变化已经过期了。

在监管方面,必须采用全球化的方法。数据不像物理材料那样遵守边界,不同州,国家和大陆之间的冲突标准难以进行充分的监管。

在业务方面,许多组织已经扼杀了他们的数字化转型工作,使其成为数据驱动的,忽视了正确管理能够实现数据的数据。GDPR需要一种数据治理(DG)的协作方法,一旦正确完成,将增加价值并实现合规性。

数据治理的兴起2.0

数据治理1.0由于其孤立,不协作的特性而未能获得立足点。它缺乏对业务成果的关注,因此企业领导者一直在努力看到它的价值。因此,IT部门负责对数据元素进行编目以支持搜索和发现,但由于从业务运营方面被删除,他们很少了解数据的上下文。这意味着数据通常不完整且质量差,无法实现有效的数据驱动业务。

在新的监管标准的鼓励下,公司范围内的数据治理责任将从根本上改变企业对数据治理的看法。数据治理2.0及其协作方法将成为新常态,这意味着那些从数据及其见解中获益最多的人将直接参与其治理。

这意味着更多来自C级管理人员,直线经理等的支持。这意味着更高的责任感,以及更高的可发现性和可追溯性。最重要的是,它意味着更好的数据质量,可以更自信地制定更快,更好的决策。

升级的数字化转型

数字化转型及其突出性今年不会减少。实际上,多亏了Data Governance 2.0,数字化转型有望加速 - 而不是放慢速度。

致力于数据治理而不仅仅是合规性的组织将获得回报。通过更强大的数据治理基础,正在进行数字化转型的组织将享受到许多重要的好处,包括更好的决策制定,更高的运营效率,更好的数据理解和沿袭,更高的数据质量和更高的收入。

数据驱动的样本,如亚马逊,Airbnb和优步,已经享受到这些好处,利用它们来破坏并主导各自的行业。但是你不必是亚马逊大小来实现它们。脱银DG并将其视为一项战略举措是数据驱动成功的第一步。

数据作为有价值资产

2017年数据变得比石油更有价值。然而,尽管进行了这一评估,但许多企业却忽略了将其数据视为珍贵资产。就上下文而言,工业革命是由必须维护良好以保证正常运行的机器提供动力,因为停机会导致损失。这种机器为企业增加了价值,因此它具有天生的价值。

快进到2018年,数据处于中心位置。因为数据是价值驱动因素,所以数据本身很有价值。仅仅因为它没有物理存在并不意味着它没有物理资产那么重要。因此,企业需要改变他们对数据的看法,而这一年的思维可能会发生变化。

启用DG的AI和IoT

人工智能(AI)和物联网(IoT)不是新概念。然而,它们还没有完全实现,仍然有竞争的企业从这些市场中分得一杯羹。

随着两者的不断扩大,他们将把已经加速的数据量 - 特别是非结构化数据 - 增加到几乎不可思议的水平。三个V的数据趋于一致升级。随着音量的增加,必须处理数据的速度和速度也会增加。各种数据 - 在这些情况下大多数是非结构化的 - 也会增加,因此要管理它,企业需要实施有效的数据治理。

除了强大的数据治理实践外,越来越多的企业将转向NoSQL数据库来管理不同的数据类型。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 着力提升工业数据资源管理能力,加快工业互联网创新发展步伐

    着力提升工业数据资源管理能力,加快工业互联网创新发展步伐

    工业互联网是第四次工业革命的重要基石,作为数字化转型的关键支撑力量,正在全球范围不断颠覆传统制造模式、生产组织方式和产业形态,推动传统产……查看详情

    发布时间:2019.03.07来源:数据管理浏览量:170次

  • 企业如何有效进行数据治理

    企业如何有效进行数据治理

    如果你处理或使用过大量数据,一定有听到过“数据治理”这个词。你会思考数据治理是什么?……查看详情

    发布时间:2019.01.18来源:亿信华辰浏览量:160次

  • 医疗保健数据治理:预测是什么?

    医疗保健数据治理:预测是什么?

    医疗保健数据治理已经远超过应用程序只是满足合规性标准。医疗费用始终是讨论的主题,健康保险状况和“平价医疗法案”(ACA)等政策也是如此。……查看详情

    发布时间:2018.12.03来源:迈克尔帕斯托雷浏览量:178次

  • 大数据治理的语义方法

    大数据治理的语义方法

    正如Coyne所说:“数据治理正在成长为一套实践,软件和系统是其中不可或缺的一部分。但他们只是其中的一部分。您在更高层次上拥有的是实践和……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:179次

  • 应用程序组合管理:优化您的投资组合

    应用程序组合管理:优化您的投资组合

    过程的第四个也是最后一个阶段是优化您的投资组合,在这里您必须开始检查其他应用程序和项目之间的依赖关系。您还必须在每个应用程序中添加成本和……查看详情

    发布时间:2019.02.19来源:亿信华辰浏览量:149次

  • 企业数据治理的九大要素

    企业数据治理的九大要素

    元数据管理致力于处理技术元数据、业务元数据、管理元数据,通过丰富的元数据分析和检核,帮助各行各业用户获得更多的数据洞察力,进而挖掘出隐藏……查看详情

    发布时间:2020.07.10来源:知乎浏览量:258次

  • 数据仓库应该怎么建立

    数据仓库应该怎么建立

    现在的社会就是一个数据化的社会,大数据已经成为大家讨论的热门话题了,对于每个企业来说,建立自己的数据仓库已经显得非常重要了,尤其是对于新……查看详情

    发布时间:2019.07.17来源:数据仓库小编浏览量:98次

  • 数据交换如何“主动出击”?

    数据交换如何“主动出击”?

    传统的数据交换,一般说来是用户根据自身的数据抽取需求,配置好相关的设置,定义好数据抽取时间来进行数据交换。这是一种被动式的数据交换,如果……查看详情

    发布时间:2020.09.27来源:头条浏览量:125次

  • 企业数据质量是数字化时代企业的重要资产

    企业数据质量是数字化时代企业的重要资产

    大数据的概念正在进一步渗透到各个行业与领域当中,随着企业业务增长和规模扩大,以及伴随着信息技术和相关基础设施的不断完善,在短短的几年内,……查看详情

    发布时间:2020.01.10来源:知乎浏览量:162次

  • 数据治理的概念、难点和最佳实践方法

    数据治理的概念、难点和最佳实践方法

    数字化转型的目的和核心是数据赋能业务,通过智能数据归一、数据统一治理与服务、数据实体化融合、数据资产化的方式,帮助实现业务转型、创新和增……查看详情

    发布时间:2021.08.06来源:亿信华辰,数据治理的实践方法浏览量:132次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议