数据治理2.0:2018年最值得关注的数据

发布时间:2019.01.25来源:亿信华辰浏览量:186次标签:数据治理


今年,我们将在震中的Data Governance 2.0中看到我们收集,存储和使用数据的方式发生了巨大变化。对于许多组织而言,这些变化将是被动的,因为它们必须适应新的法规。其他人将使用监管变革作为催化剂,积极主动地使用他们的数据。理想情况下,你会想要属于后一类。

数据驱动型企业及其相关行业正在经历前所未有的变化。

近年来不仅数据量激增,我们现在也看到数据提供的数量也在增加。从本质上讲,我们发现较小的数据单元更有用,但收集的数据比以往任何时候都多。

目前,数据机会似乎无边无际,我们几乎没有开始划清界限。所以这是2018年预期的一些最大的数据改变。

GDPR

通用数据保护条例(GDPR)具有组织扰。对违规行为的处罚将于5月25日立即生效,罚款高达2000万欧元,占该公司全球年营业额的4%,以较高者为准。

虽然这是欧洲的授权,但事实是所有与欧洲交易的组织,不仅仅是非洲大陆的组织,都必须遵守。正因为如此,我们正在全球范围内努力引入新的政策,程序和系统,以便按照自Y2K以来从未见过的规模进行准备。

很容易将这种性质的强制性变化视为负担。但从监管和商业角度来看,这种变化已经过期了。

在监管方面,必须采用全球化的方法。数据不像物理材料那样遵守边界,不同州,国家和大陆之间的冲突标准难以进行充分的监管。

在业务方面,许多组织已经扼杀了他们的数字化转型工作,使其成为数据驱动的,忽视了正确管理能够实现数据的数据。GDPR需要一种数据治理(DG)的协作方法,一旦正确完成,将增加价值并实现合规性。

数据治理的兴起2.0

数据治理1.0由于其孤立,不协作的特性而未能获得立足点。它缺乏对业务成果的关注,因此企业领导者一直在努力看到它的价值。因此,IT部门负责对数据元素进行编目以支持搜索和发现,但由于从业务运营方面被删除,他们很少了解数据的上下文。这意味着数据通常不完整且质量差,无法实现有效的数据驱动业务。

在新的监管标准的鼓励下,公司范围内的数据治理责任将从根本上改变企业对数据治理的看法。数据治理2.0及其协作方法将成为新常态,这意味着那些从数据及其见解中获益最多的人将直接参与其治理。

这意味着更多来自C级管理人员,直线经理等的支持。这意味着更高的责任感,以及更高的可发现性和可追溯性。最重要的是,它意味着更好的数据质量,可以更自信地制定更快,更好的决策。

升级的数字化转型

数字化转型及其突出性今年不会减少。实际上,多亏了Data Governance 2.0,数字化转型有望加速 - 而不是放慢速度。

致力于数据治理而不仅仅是合规性的组织将获得回报。通过更强大的数据治理基础,正在进行数字化转型的组织将享受到许多重要的好处,包括更好的决策制定,更高的运营效率,更好的数据理解和沿袭,更高的数据质量和更高的收入。

数据驱动的样本,如亚马逊,Airbnb和优步,已经享受到这些好处,利用它们来破坏并主导各自的行业。但是你不必是亚马逊大小来实现它们。脱银DG并将其视为一项战略举措是数据驱动成功的第一步。

数据作为有价值资产

2017年数据变得比石油更有价值。然而,尽管进行了这一评估,但许多企业却忽略了将其数据视为珍贵资产。就上下文而言,工业革命是由必须维护良好以保证正常运行的机器提供动力,因为停机会导致损失。这种机器为企业增加了价值,因此它具有天生的价值。

快进到2018年,数据处于中心位置。因为数据是价值驱动因素,所以数据本身很有价值。仅仅因为它没有物理存在并不意味着它没有物理资产那么重要。因此,企业需要改变他们对数据的看法,而这一年的思维可能会发生变化。

启用DG的AI和IoT

人工智能(AI)和物联网(IoT)不是新概念。然而,它们还没有完全实现,仍然有竞争的企业从这些市场中分得一杯羹。

随着两者的不断扩大,他们将把已经加速的数据量 - 特别是非结构化数据 - 增加到几乎不可思议的水平。三个V的数据趋于一致升级。随着音量的增加,必须处理数据的速度和速度也会增加。各种数据 - 在这些情况下大多数是非结构化的 - 也会增加,因此要管理它,企业需要实施有效的数据治理。

除了强大的数据治理实践外,越来越多的企业将转向NoSQL数据库来管理不同的数据类型。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 为什么要进行数据交换

    为什么要进行数据交换

    企业大量的IT投资建立了众多的信息系统,但是随着信息系统的增加,各自孤立工作的信息系统将会造成大量的冗余数据和业务人员的重复劳动。企业急……查看详情

    发布时间:2020.08.10来源:知乎浏览量:126次

  • 数据治理超越了将事实放在一起

    数据治理超越了将事实放在一起

    学习如何学习正成为一项关键的执行技能,学习概率思维将成为赌注。……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:124次

  • 数据治理与分析相结合

    数据治理与分析相结合

    不到十年前,由于规模,资源和组织能力的原因,大型企业比同行业的小企业具有显着的优势。现在已不再是这样,因为数字创新和全球化的推动,加上移……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:209次

  • 大数据治理需要解决哪些问题?

    大数据治理需要解决哪些问题?

    随着云时代的来临,大数据也吸引了越来越多的关注。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大……查看详情

    发布时间:2018.10.15来源:数邦客浏览量:145次

  • 数据管理能力成熟度评估模型

    数据管理能力成熟度评估模型

    数据管理能力成熟度评估模型,中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会发布。……查看详情

    发布时间:2019.09.02来源:GB/T36073—2018浏览量:460次

  • 2019年的数据管理趋势:治理,DataOps,云

    2019年的数据管理趋势:治理,DataOps,云

    GDPR的数据治理要求,对AI驱动的分析的追求以及云计算的拉动为2018年数据管理和大数据团队的努力奠定了基调。这些和相关的数据管理趋势……查看详情

    发布时间:2019.01.02来源:亿信华辰浏览量:120次

  • 主数据管理主要管理哪些数据?

    主数据管理主要管理哪些数据?

    主数据主要管理多百个业务系统中共享的重要数据,比如公司组织架度构、物料编号、客户资料等等数据,国知辰机器人的主数据管理系统(MDM)能够……查看详情

    发布时间:2020.04.29来源:知乎浏览量:152次

  • 数据质量需求与定义

    数据质量需求与定义

    数据质量通常表现为一组具体的流程和技术,用于识别和修正数据中的错误以支持业务运行及决策支持。在银行实际中数据质量管理的应用场景主要包括数……查看详情

    发布时间:2019.11.15来源:知乎浏览量:253次

  • 什么是数据治理?

    什么是数据治理?

    关于数据治理,我需要了解什么?数据治理要求组织了解并评估其数据必须满足的法规要求,法律要求和业务最佳实践,建立规则,并采用自动化和人工流……查看详情

    发布时间:2018.11.16来源:互联网浏览量:142次

  • 数据治理有助于为分析构建坚实的基础

    数据治理有助于为分析构建坚实的基础

    如果您的业务很多,那么它就会大量投资于分析。我们生活在一个数据驱动的世界里。数据推动了我们从零售商处获得的建议,我们从杂货店获得的优惠券……查看详情

    发布时间:2019.01.23来源:亿信华辰浏览量:165次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议