数据建模和数据映射:来自任何数据的结果

发布时间:2019.01.17来源:亿信华辰浏览量:197次标签:数据治理


 统一的数据建模和数据映射方法可能是许多数据驱动型组织所需要的突破。

在我与客户进行的大多数对话中,他们表示需要一个可行的解决方案来模拟他们的数据,以及捕获和记录其环境中的元数据的能力。

数据建模是任何数据管理计划的组成部分。组织使用数据模型来驯服“静态数据”,以用于所有类型的数据库的业务使用,治理和技术管理。

但是,一旦一个组织了解它拥有的数据以及它是如何通过数据模型构建的,它就需要回答其他关键问题:它来自哪里?它是否随着旅程而改变?它从哪里开始?

数据映射:驯服“动态数据”

了解数据如何在整个技术和业务数据架构中移动对于所有 数据资产的真实可见性,上下文和控制至关重要。

管理运动中的数据是一项困难且耗时的任务,涉及将源元素映射到数据模型,定义所需的转换,和/或为下游目标提供相同的转换。

从历史上看,它要么外包给ETL / ELT开发人员,他们经常创建一个对业务不透明的孤立的技术基础架构,或者业务友好的映射被保存在各种难以整合和重用的难以整合的电子表格中,以适应新的要求。

如果您可以将静态数据和运动数据相结合,以创建一个高效,准确和实时的数据管道(包括沿袭),该怎么办?然后,您可以花时间查找所需的数据,并使用它来产生有意义的业务成果。

好消息......你可以。

自动数据映射

您的数据建模人员可以继续使用erwin Data Modeler(DM)作为数据库管理系统的基础,记录,实施和改进这些标准。但是,您可以扫描和集成任何数据源,并自动将其呈现给所有相关方,而不是依靠数据模型来传播元数据信息。

erwin Mapping Manager(MM)元数据管理从数据模型转移到专用的自动化平台。它可以从任何来源收集元数据,包括JSON文档,erwin数据模型,数据库和ERP系统,开箱即用。

此功能通过从任何地方收集任何数据来强调我们的Any 2数据方法。erwin MM可以安排数据收集并创建用于比较的版本,以清楚地识别任何变化。

可以使用扩展数据属性来增强元数据定义,并且可以基于收集的元数据创建详细的数据谱系。最终用户可以快速搜索信息并查看业务流程上下文中的特定数据。

总结当前数据建模的关键特性客户似乎最为兴奋:

  • 轻松导入传统映射,以及共享和重用映射和转换
  • 元数据目录,可以从任何地方自动收集任何数据
  • 全面的上游和下游数据沿袭
  • 具有比较功能的版本控制
  • 影响分析

所有这些功能都支持并可以与erwin Data Governance集成。最终结果是知道您拥有哪些数据以及它们在哪里,这样您就可以从任何地方为任何数据提供快速,高质量和完整的管道,从而实现您的组织目标。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 增强数据管理吸引了更多企业的兴趣

    增强数据管理吸引了更多企业的兴趣

    “我认为数据专业人员确实希望机器处理繁琐且计算密集的东西,”Henschen说。“有很多工作要做,让机器处理他们最擅长的事情,这将使人类……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:127次

  • 10个顶级元数据管理工具

    10个顶级元数据管理工具

    元数据管理解决方案监控整个生命周期中的数据,包括数据分析,数据价值,数据治理以及风险和合规性。……查看详情

    发布时间:2019.07.11来源:头条浏览量:530次

  • 企业如何快速实现一个数据治理项目

    企业如何快速实现一个数据治理项目

    大数据治理是诸多数据问题的全面解决之道。企业只有建立了完整的大数据治理体系,保证数据的质量,才能够真正有效地挖掘企业内部的数据价值,对外……查看详情

    发布时间:2020.03.19来源:知乎浏览量:140次

  • 理解和证明数据治理2.0

    理解和证明数据治理2.0

    过去,证明数据治理的合理性是非常困难的。数据治理1.0的孤岛性质以及缺乏对增值的关注意味着买入率很低。……查看详情

    发布时间:2019.01.25来源:亿信华辰浏览量:186次

  • 数据治理寻求未来:平衡数据治理和数据管理

    数据治理寻求未来:平衡数据治理和数据管理

    想要通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势吗?那么这篇文章你一定得看!……查看详情

    发布时间:2019.08.29来源:知乎浏览量:112次

  • 对于制药公司而言,数据治理不应成为吞下难以接受的药物

    对于制药公司而言,数据治理不应成为吞下难以接受的药物

    制药和生命科学公司面临着许多与其他行业相同的数字转型压力,例如我们之前探讨过的金融服务和医疗保健。作为回应,他们正在转向高级分析平台和基……查看详情

    发布时间:2018.12.06来源:迈克尔帕斯托雷浏览量:144次

  • 数据治理是中小银行决胜数字化转型成功的关键

    数据治理是中小银行决胜数字化转型成功的关键

    未来,银行的资产不是现金等实物,而是“数据”。因此有效的数据治理是银行实现数字化转型的基础。目前,中小银行在业务发展中逐渐积累了大量的内……查看详情

    发布时间:2019.12.13来源:知乎浏览量:136次

  • 做好大数据治理才能建设好大数据平台

    做好大数据治理才能建设好大数据平台

    数据量不断的增加,对数据分析和管理带来了挑战,分析数据背后的价值也为企业发展,社会进步带来了机遇。因此各行各业开始建设大数据平台,大数据……查看详情

    发布时间:2019.08.15来源:知乎浏览量:151次

  • 数据治理系列5:浅谈数据质量管理

    数据治理系列5:浅谈数据质量管理

    数据质量管理是对数据从计划、获取、存储、共享、维护、应用、消亡生命周期的每个阶段里可能引发的数据质量问题,进行识别、度量、监控、预警等一……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:179次

  • 元数据治理—从数据的源头开始

    元数据治理—从数据的源头开始

    将题目分为两部分——元数据和数据治理时,元数据治理最容易理解。询问任何擅长元数据管理的组织(或提供他们的数据,信息和记录的完整文档),无……查看详情

    发布时间:2019.06.20来源:简书浏览量:206次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议