让数据清澈如水:数据清洗的策略与方法

发布时间:2020.11.23来源:亿信华辰浏览量:228次标签:数据治理

在数据仓库中,数据是面向某一主题的数据的集合,这些数据从多个业务系统抽取而来,不同的数据来源加上历史数据的堆积,难免会有问题数据出现,这些问题数据大致可以分为三大类:不完整的数据、错误的数据以及重复的数据。数据清洗的职责就是分辨、处理这些问题数据。

数据清洗,顾名思义,就是把数据拿去“洗一遍”,把其中的脏数据给“洗掉”,简单来说,数据清洗就是发现并纠正数据中可识别的错误,从而来保持数据的完整性、唯一性、一致性等。

针对不同问题数据有哪些清洗方式?
1、不完整的数据
不完整的数据是指一条数据中记录某一特征的数据丢失了,比如员工信息表中名叫张三的员工的年龄缺失了。某些数据的缺失值可以从本数据源或其他数据源推导出来,像上例中的员工年龄就可以根据身份证号计算出来。除了这种特殊关系的数据缺失外,其他数据的缺失常用的清洗方法还有取平均值、最大值、最小值、计算结果值,或者取其他字段的值等等。

2、重复的数据
重复的数据就是相同的一条数据出现了两次或以上,对于重复的数据清洗起来比较简单,只需要根据主键或者其他规则删除多余的数据即可。

3、错误的数据
错误的数据又可以分成格式错误和内容错误两种。格式错误是指我们收集到的数据的格式跟我们期望的数据格式不一致,比如设计的库表字段为8位的日期“20200604”格式,但我们获取到的数据为“2020-06-04”,这种数据肯定是存不进数据库的,需要将其清洗成8位的日期字符串,我们可以先将“2020-06-04”转换为日期型的数据,然后再将日期转换为“YYYYMMDD”格式的字符串,也可以采用字符串分割在拼接的方法,依次取“2020-06-04”的1-4、6-7、9-10位拼接成一个新的字符串。

内容错误的数据检测处理则稍麻烦些,需要数据处理人员通过分析来找出脏数据。我们可以通过简单的黑名单或白名单来找出脏数据,只要一列数据中出现了黑名单上的值,就认为该数据是脏数据,并将其替换为我们预先准备好的指定值。

如何在数据工厂中进行数据清洗?
看完了上述数据清洗的方法和策略,大多数人还不太清楚实际操作中该如何清洗数据。下面就以亿信数据工厂为例为大家演示清洗数据的全流程。

假设我们现在有一张员工信息表,表中入职时间字段格式为“yyyyMMddHH:mm:ss”,我们要将其格式改为“yyyy-MM-dd HH:mm:ss”,然后存入新的目标表中,下面演示数据清洗的详细步骤。

新建连接池

第一步创建源端数据源连接。依次点击数据源 >> 连接池管理 >> 新建连接池 >> Oracle。

在弹出的对话框中输入数据库的信息,点击保存。

2.创建ETL过程

第二步创建清洗任务。依次点击,设计区 >> ETL过程 >> 新建,进入到ETL过程编辑器界面

依次将输入输出分组中的表输入、表输出组件和转换组件分组中的清洗组件拖到右侧编辑区,并按照表输入-清洗组件-表输出的顺序将组件连线。

双击点开表输入组件,选择刚刚创建的连接池,选择需要清洗数据的表。

双击点开清洗组件,点击“新增”按钮;在弹出的窗口左侧树上选择“日期时间字符串格式转换”,在右侧需要清洗的字段前面打上勾,并点击日期时间转换设置框中的右侧“...”按钮;在弹出的时间转换格式对话框中,选择转换前和转换后的字符串格式,这里选择的是将“yyyyMMddHH:mm:ss”转换为“yyyy-MM-dd HH:mm:ss”点击确定关闭所有对话框。

双击点开表输出组件,选择目标连接池和目标表;点击字段映射,在弹出的字段映射对话框中点击“字段自动映射”,选择“按文字匹配”,点击“确定”按钮关闭对话框。然后在关键字“NO_”后上打钩。

在表输出的目标设置界面中,更新方式选择“数据更新”,批量大小输入“1000”。点击确定,关闭组件设置对话框。这样清洗任务就创建完成了。

3.运行ETL,查看数据
点击上方工具栏中的“运行”按钮,运行完成后右键点击表输出组件,选择预览数据。
这时候可以看到入职时间的数据格式全都变成了“yyyy-MM-dd HH:mm:ss”。至此数据清洗成功。

亿信数据工厂中有数十个组件,内置了大量的数据清洗转换规则,还有SQL组件、表达式组件等支持用户通过SQL的方式自定义转换规则,实现一键清洗数据。通过数据工厂,可以简单、快速完成数据的清洗工作。感兴趣的小伙伴可前往亿信华辰官网申请试用哦~

3小程序.jpg

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 大数据时代企业数据治理应该怎么做?

    大数据时代企业数据治理应该怎么做?

    大数据不是凭空而来的,1981年第一个数据仓库诞生,到现在已经有近40年的历史了,而国内的企业数据平台的建设是从90年代末才开始的,从第……查看详情

    发布时间:2019.08.01来源:知乎浏览量:146次

  • 数据治理的全球难题:法治化治理如何跟上技术更新步伐?

    数据治理的全球难题:法治化治理如何跟上技术更新步伐?

    随着技术的发展,需要治理的已不只是数据,人工智能算法等领域也成为治理课题。数据、互联网平台、人工智能算法应该如何治理?这在全球范围内都是……查看详情

    发布时间:2019.10.25来源:知乎浏览量:123次

  • 我国数据治理面临的现实挑战

    我国数据治理面临的现实挑战

    数据驱动的经济社会数字化转型,既充分释放了来自数据创造价值的潜力、提高了劳动生产率和治理效率,也带来了前所未有的现实挑战。如何既促发展又……查看详情

    发布时间:2020.10.31来源:知乎浏览量:131次

  • 以数据中台为切入点,场景/应用驱动源头数据治理

    以数据中台为切入点,场景/应用驱动源头数据治理

    数据中台通常是应用驱动构建,所处理的数据是业务关心和使用的数据。在数据中台开发与运营服务的过程中,面临很多源头数据的问题,比如不同系统的……查看详情

    发布时间:2020.04.01来源:知乎浏览量:165次

  • 数据治理 定义,挑战和最佳实践

    数据治理 定义,挑战和最佳实践

    数据治理构成了公司范围数据管理的基础,可以有效地使用可信赖的数据。有效的数据管理是一项需要集中控制机制的重要任务。 为了帮助最终用户更……查看详情

    发布时间:2019.02.20来源:数据治理浏览量:195次

  • 数据治理与数据质量有何不同?

    数据治理与数据质量有何不同?

    当我们听到数据管理这些词时,“ 数据质量 ”和“数据治理” 这两个术语出现了很多,它们应该是因为这些是确保组织以最佳方式利用其信息的重要……查看详情

    发布时间:2019.06.25来源:知乎浏览量:281次

  • 大数据共享交换平台建设方案

    大数据共享交换平台建设方案

    数据交换共享平台,随着各行业信息化的发展,各行业系统及数据越来越多,也对IT系统建设提出了互联互通、共享交换、业务协同、数据治理等多方面……查看详情

    发布时间:2020.08.14来源:知乎浏览量:223次

  • 数据管理与数据治理的区别

    数据管理与数据治理的区别

    数据管理和数据治理有很多地方是互相重叠的,它们都围绕数据这个领域展开,因此这两个术语经常被混为一谈。此外,每当人们提起数据管理和数据治理……查看详情

    发布时间:2019.08.27来源:DAMS浏览量:141次

  • 你知道什么是数据中台吗?

    你知道什么是数据中台吗?

    什么是数据中台数据中台是全新的架构变革。过去三十年,企业数据管理都以传统的IT架构为基础。每当技术部门为业务部门解决问题时,需要从业务需……查看详情

    发布时间:2020.11.21来源:国云数据中台浏览量:155次

  • 企业数据标准管理系统应该这样做!

    企业数据标准管理系统应该这样做!

    提到“标准”二字,我们第一时间能够想到的就是一系列的标准化文档,例如:产品设计标准、生产标准、质量检验标准、库房……查看详情

    发布时间:2020.08.31来源:CSDN浏览量:184次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议